Modification of stem cell states by alcohol and acetaldehyde.

TitleModification of stem cell states by alcohol and acetaldehyde.
Publication TypeJournal Article
Year of Publication2020
AuthorsSerio RN, Gudas LJ
JournalChem Biol Interact
Volume316
Pagination108919
Date Published2020 Jan 25
ISSN1872-7786
KeywordsAcetaldehyde, Aldehyde Oxidoreductases, Animals, Cell Differentiation, DNA Damage, Ethanol, Humans, Signal Transduction, Stem Cells
Abstract

Ethanol (EtOH) is a recreationally ingested compound that is both teratogenic and carcinogenic in humans. Because of its abundant consumption worldwide and the vital role of stem cells in the formation of birth defects and cancers, delineating the effects of EtOH on stem cell function is currently an active and urgent pursuit of scientific investigation to explicate some of the mechanisms contributing to EtOH toxicity. Stem cells represent a primordial, undifferentiated phase of development; thus encroachment on normal physiologic processes of differentiation into terminal lineages by EtOH can greatly alter the function of progenitors and terminally differentiated cells, leading to pathological consequences that manifest as fetal alcohol spectrum disorders and cancers. In this review we explore the disruptive role of EtOH in differentiation of stem cells. Our primary objective is to elucidate the mechanisms by which EtOH alters differentiation-related gene expression and lineage specifications, thus modifying stem cells to promote pathological outcomes. We additionally review the effects of a reactive metabolite of EtOH, acetaldehyde (AcH), in causing both differentiation defects in stem cells as well as genomic damage that incites cellular aging and carcinogenesis.

DOI10.1016/j.cbi.2019.108919
Alternate JournalChem. Biol. Interact.
PubMed ID31846616
PubMed Central IDPMC7036011
Grant ListR01 AA018332 / AA / NIAAA NIH HHS / United States
T32 CA062948 / CA / NCI NIH HHS / United States